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Abstract   Photoinduced  reversible  liquefaction  and  solidification  of  polymers  enable  processing  and  healing  of  polymers  with  light.  Some

azobenzene-containing polymers  (azopolymers)  exhibit  two types of  photoinduced liquefaction properties:  photoinduced reversible  solid-to-

liquid transition and directional photofluidization. For the first type, light switches the glass transition temperature (Tg) values of azopolymers and

induces  reversible  solid-to-liquid  transitions.  For  the  second  type,  polarized  light  guides  solid  azopolymers  to  flow  along  the  polarization

direction.  Here,  we compare the two types of  photoliquefaction and discuss  their  mechanisms.  Recent  progresses and applications based on

photoliquefaction of azopolymers are also highlighted.
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INTRODUCTION

Solid-to-liquid transition is essential for polymer processing and
repairing. In general, the solid-to-liquid transition of polymers is
achieved  by  heating  above  glass  transition  temperature  (Tg)
values,  where  polymers  change  from  hard  glass  states  to  soft
rubber  states.  If  the  solid-liquid  conversion  of  polymers  is
achieved using a non-thermal stimulus, not only could polymer
reprocessing  be  achieved  at  room  temperature,  but  various
applications could be realized by utilizing different properties of
the two switchable states of polymers.

Azobenzene-containing polymers (azopolymers) with pho-
toresponsive properties are advantageous in technologies of
lithography,[1−3] actuators,[4−8] photonics,[9] solar  energy  con-
version,[10,11] information storage,[12,13] etc.  Among numerous
functional  azopolymers,  some  of  them  exhibit  two  types  of
photoliquefaction  properties.  For  the  first  type,  light  can
switch Tg values of such polymers and induce reversible solid-
to-liquid transitions.[14,15] For the second type, polarized light
can  guide  solid  azopolymers  to  flow  along  the  polarization
direction.[1] The  unique  feature  of  these  azobenzene  poly-
mers  is  that  light  with  high  spatiotemporal  resolution  can
(re)shape  or  heal  the  polymers  at  room  temperature  and
switch mechanical or other properties of the polymers. So far,

azopolymers exhibiting photoliquefaction have shown prom-
ising applications in many emerging fields,  including surface
relief  gratings  (SRGs),[16−19] reversible  adhesion,[20−23] self-
healing,[14,24,25] actuation,[24,26] nanotechnology,[3,27] etc.

Over  the  past  decades,  there  have  been  many  studies  on
directional  photofluidization  of  azopolymers,[28] while  pho-
toinduced reversible solid-to-liquid transition is a recently de-
veloped  research  field.  When  the  earliest  relevant  research
appeared,[14] a minireview pointed out there are two types of
photoliquefaction  for  azopolymers.[29] In  this  feature  article,
we  discuss  the  azobenzene  types,  photoisomerization  pro-
cesses,  light  wavelengths,  flow  conditions,  liquid  presence
conditions  and  mechanisms  of  the  two  types  of  photolique-
faction  (Scheme  1),  and  introduce  their  latest  development
and applications.

COMPARISON OF TWO TYPES OF
PHOTOINDUCED LIQUEFACTION

Azopolymers  with  photoinduced  reversible  solid-to-liquid
transitions  have  azobenzene  type  chromophores  (azobenzene
derivatives  are  divided  into  azobenzene-type,  aminoazoben-
zene-type,  and  pseudo-stilbene-type  in  an  early  review[30]).
Trans azopolymers  have Tg values  above  room  temperature,
while cis azopolymers have Tg values below room temperature.
These  azopolymers  are  similar  to  other  model  polymers  with
trans and cis side  chains.[31] In  the  process  of  liquefaction,
ultraviolet (UV) irradiation induces trans-to-cis isomerization and
liquefaction, while visible light induces cis-to-trans isomerization
and  solidification.  After  photoliquefaction,  as  long  as  the
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content  of cis azpolymers  is  high,  azopolymers  remain  liquid
even when light is turned off.[15,29]

Different from reversible solid-to-liquid transitions, the me-
chanism  for  directional  photofluidization  is  not  clear  up  to
now. The corresponding azopolymers mostly contain pseudo-
stilbene  type  azo  chromphores.  In  addition,  some  azopoly-
mers  containing  azobenzene-type  and  aminoazobenzene-
type  azo  chromphores  also  have  the  property  of  directional
photofluidization.[1] In  most  cases,  polarized  light  induces
trans-cis-trans cycles,  and  guides  azopolymers  to  flow  along
the direction of polarization. The azopolymers only show flu-
id property under light irradiation.[15,29]

PHOTOINDUCED REVERSIBLE SOLID-TO-LIQUID
TRANSITIONS

The study of photoinduced reversible solid-to-liquid transitions
of  azopolymers  should  be  traced  back  to  the  small  molecule
derivatives  of  azobenzene.  In  1937,  Hartley  discovered  that cis
and trans azobenzene  isomers  had  different  melting  points.[32]

In 2012, Akiyama and Yoshida, and Okui and Han, respectively,
observed  photoinduced  solid-to-liquid  transition  of  azobenze-
ne-containing small  molecules at  room temperature.[33,34] After
that,  more azobenzene small  molecules with similar  characters

Photoliquefaction
of azopolymer 

Directional
photofluidization 

Reversible solid-
liquid transitions

Pseudo-stilbene
type

Azobenzene
type

Mechanism:
Under debate

Mechanism:
Photoswitchable Tg

Flow along the
light polarization 

Random flow

Visible
light ( PL)

Trans-cis-trans

cycling (fluid-like)

Trans

(solid)
Trans

(solid)

Cis

(liquid)

Visible
light

UV

(High 
cis content)

(Only during 
irradiation)

 
Scheme  1    Comparison  of  photoinduced  reversible  solid-to-liquid
transitions and directional photofluidization (PL: polarized light).
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Fig. 1    Photoinduced reversible solid-to-liquid transitions of azopolymer P1. (a) Photoisomerization and chemical structures of P1. P1 is
a solid with a high Tg in the trans state and is a liquid with a low Tg in the cis state. (b) Optical microscopy images of P1 powders under
alternating  UV  (365  nm,  67  mW/cm2)  and  visible  light  (530  nm,  5  mW/cm2)  irradiation.  (c)  Scheme  of  reversible  scanning  force
microscopy (SFM) measurements of P1 film. (d−f) Force-piezo position curves of (d) initial P1 film, (e) after 365 nm light irradiation and (f)
after subsequent 530 nm light irradiation (Reprinted with permission from Ref. [14]; Copyright (2017) Springer Nature).
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were reported.[35−37] Because light can change melting points of
small  molecules,  we  hypothesized  that  light  may  switch Tg

values  of  azopolymers.  In  2017,  we  synthesized  a  typical  azo-
polymer P1 with photoliquefaction property and demonstrated
the photoliquefaction mechanism of P1 (Fig. 1).[14]

We  take  P1  as  an  example  to  show  photoinduced  revers-
ible  solid-to-liquid  transitions.  Azopolymer  P1  contains  azo-
benzene-type chromophores  on its  side  chains.  The  azoben-
zene groups underwent trans-to-cis isomerization via UV irra-
diation,  and cis-to-trans isomerization via visible  light  irradi-
ation.  We  demonstrated  that  the Tg of trans-azopolymer  P1
(48  °C,  measured  by  differential  scanning  calorimetry) was
higher  than room temperature and it  was solid,  while  the Tg

of cis polymer (−10 °C) was lower than room temperature and
it  was  liquid.  Therefore,  P1  underwent  reversible  solid-to-li-
quid transitions upon alternating irradiation of UV and visible
light.  The  transformation  of  azopolymer  P1  from  solid  pow-
der  to  liquid  droplet  was  observed  using  optical  microscopy
(Fig.  1b).  The  force-piezo  position  curves  obtained  with  a
spin-coated film of P1 showed reversible signs of  a hard sur-
face  and  a  soft  surface  (Figs.  1c and 1d).  The  study  of  pho-
toswitchable Tg provided  a  new  strategy  for  the  application
development of photoresponsive polymer. Based on photoin-
duced  reversible  solid-to-liquid  transitions  and  photoswitch-

able Tg,  we  further  explored  a  variety  of  new  functions  and
applications of azopolymers.

The flow property of  liquefied cis P1 enables the repairing
of  damaged  hard  coatings.  Scratches  on  a  P1  film  were  re-
peatedly  healed  upon  locally  and  alternately  irradiated  with
UV  light  and  visible  light.  As  a  result,  the  damaged  part  was
converted to the liquid state and the scratch was healed due
to capillary flow of the polymer (Fig. 2a). Similarly, the surface
roughness of patterns could be effectively reduced by the re-
versible solid-to-liquid transitions (Fig. 2b).[14] Especially, trans
P1  has  an  adhesion  strength  up  to  1.02  MPa  (substrates:
quartz,  glued  area:  0.375  cm2).  After  photoliquefaction,  the
adhesion strength of cis P1 decreased to 0.08 MPa.[20] So,  P1
with  switchable  adhesion  can  be  used  for  transfer  printing
(Fig. 2c),[14] and reversible adhesives (Figs. 3a and 3b). Related
studies  of  reversible  adhesion  of  azopolymers  have  been  re-
ported  in  some  works,[21−23] and  summarized  in  a  recent  re-
view.[38] Photo-controlled  adhesive  P1  was  suitable  for  vari-
ous kinds of  substrates and underwater conditions.  Azopoly-
mers  with  large  adhesion  force  transition  are  expected  to
meet  the  requirement  of  industrial  application.  In  addition,
entangled  linear  P1  was  used  as  healable  and  reprocessable
photoactuators  (Fig.  3c).  The  photoinduced  reversible  solid-
to-liquid  transitions  contributed  to  the  photoinduced  bend-
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Fig. 2    Various applications of P1 based on photoinduced reversible solid-to-liquid transitions. (a) Light-healable film. The scratches
on a P1 film were reversibly  healed with light.  (b)  Light irradiation reduced the surface roughness of  microstructures prepared by
imprint  lithography.  (c)  Azopolymer  P1  was  used as  ink  for  transfer  printing.  (Reprinted with  permission from Ref.  [14];  Copyright
(2017) Springer Nature).
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ing of the nonaligned azopolymer films.[24]

As  a  side-chain  azobenzene  polymer,  structure  of  P1
presented  a  typical  design  reference.  Azopolymers  could  re-
tain  the  solid-to-liquid  transition  property  after  properly
changing the length of spacer group and tail  group.[21,39] Re-
cently,  different research groups have studied the properties
and  applications  of  these  side-chain  azopolymers.  P2  also
showed photoliquefaction (Figs. 4a and 4b). The thermal con-
ductivity of P2 changed after liquefaction.[40] In addition, pre-
cise  control  of  the  micro-nano  structures  was  achieved  by
utilizing  the  high  spatial  resolution  of  light.  Yu’s  group
presented  a  facile  fabrication  method  of  multiple  nanopat-
terns in azopolymer P3 film by combining athermal  nanoim-
print  lithography  and  photolithography.[3] The  key  of  mul-
tiple  nanopatterning  lay  in  the  phototunable  mechanical
properties of the azopolymer upon photoirradiation with dif-
ferent  wavelengths  (Figs.  4c and 4d).  Chen et  al.  demon-
strated the light-induced nanowetting method for preparing
azopolymer  nanoarrays  with  well  controlled  patterns  using
designed photomasks.[27]

In addition to the typical side chain azobenzene homopoly-
mers,  some  other  types  of  azopolymers  also  exhibited  pho-
toinduced solid-to-liquid transition properties,  including side
chain copolymers[23,25] and main chain polymer.[41] Kihara and
co-workers  reported  on  an  ABA-type  triblock  copolymer  P4

with  azopolymer  termini.[23] This  ABA-type  azopolymer  had
reversible  adhesive  properties  controlled  by  light  (Figs.  5a
and 5b).  It  had  a  higher  flexibility  than  the  corresponding
homo-azopolymer.  Yu’s  group  developed  a  photocontrol-
lable  flexible  microtube  consisting  of  a  copolymer  P5  inner
layer  and  outer  flexible  supporting  layer.[25] Benefiting  from
photoswitchable Tg,  the damaged P5 layer of  microtube was
healed  with  light  (Figs.  5c and 5d).  With  the  combination  of
athermal  and  high  spatiotemporal  resolution  of  light  irradi-
ation,  photoinduced  reversible  solid-to-liquid  transition  at
room temperature is a new frontier field in the study of stim-
uli-responsive materials.

DIRECTIONAL PHOTOFLUIDIZATION

Directional photofluidization has been studied for more than 15
years,  which  has  been  summarized  by  some  reviews.[1,28,42] In
this  section,  we  will  focus  on  the  characteristics  of  liquid-like
behaviors  in  directional  photofluidization.  We  summarize  its
developments,  new  progresses,  and  differences  with  photoin-
duced reversible solid-to-liquid transitions.

The  first  two  interrelated  reports  about  directional  photo-
fluidization  are  photoinduced  SRGs  on  azopolymers.[43,44]

SRGs are  created upon exposure of  interference laser  beams
on azopolymer films.  These works  do not  specify  the flow of
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Fig.  3    Various  applications  of  P1  based  on  photoinduced  reversible  solid-to-liquid  transitions:  (a)  light-switchable
polymer adhesives, where P1 had a strong shear stress in the trans state and a weak shear stress in the cis state; (b) after
UV  irradiation, trans P1  between  two  quartz  substrates  was  liquefied  and  the  bottle  fell.  (Reprinted  with  permission
from  Ref.  [20];  Copyright  (2019)  American  Chemical  Society).  (c)  Photoactuation.  Stretched  P1  film  (100  kg/mol)  bent
towards  the  UV  light  source  and  bent  away  from  the  visible  light  source.  (Reprinted  with  permission  from  Ref.  [24];
Copyright (2019) Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim).
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azopolymers,  but  set  a  precedent.  In  2005,  two  pioneering
works demonstrated the fluid-like properties  of  azopolymers
under light irradiation.  Wang and co-workers found that col-
loidal spheres of the azopolymer P6 stretched after being ex-
posed to interfering polarized Ar+ laser beams (Figs. 6a−6e).[45]

Karageorgiev et al. reported a light-induced isothermal trans-
ition  of  azopolymer  P7  film  from  an  isotropic  solid  to  an  an-
isotropic liquid state (Figs. 6f−6h). In both works, the flow dir-
ection  of  the  azopolymers  was  along  the  light  polarization
direction.[46]
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Fig. 5    (a) Chemical structure of azopolymer P4; (b) Bonding and debonding of P4 under reversible UV and visible light irradiations. (Reprinted
with permission from Ref.  [23];  Copyright (2018) American Chemical Society).  (c) Chemical structure of azopolymer P5; (d) The microtube of P5
healed under UV irradiation. (Adapted from Ref. [25]; Copyright (2019) Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim).

  Liang, S. F. et al. / Chinese J. Polym. Sci. 2021, 39, 1225–1234 1229

 
https://doi.org/10.1007/s10118-021-2519-x

 

https://doi.org/10.1007/s10118-021-2519-x


After  the  discovery  of  directional  photofluidization,  it  has
attracted a lot of attention by researchers.  Some groups util-
ized this property to develop micro and nanostructures.[47−51]

Some found that polarization-controlled three-beam interfer-
ence  could  produce  micro-ellipsoidal  cap  arrays  on  P8
films.[52,53] The  arrays  deformed  along  the  polarization  direc-
tion of  the incident  light  (Figs.  7a and 7b).  Lee and co-work-
ers  developed  photofluidization  lithography  based  on  direc-
tional  photofluidization.[54−56] Combined  with  micro-mould-
ing  in  capillaries,  large-area,  high  resolution  nanostructures
were generated on P9 film with the aid of directional photo-
fluidization (Figs. 7c and 7d). In addition, Lee et al.  also made
use  of  polarized  light  to  achieve  the  repairing  of  wearable
electrical conductors.[57] In recent years,  some more complex
microstructural  techniques  have  been  developed.  For  ex-
ample,  Lin  and  co-workers  fabricated  breath  figure  arrays  of
azopolymers[58,59] and  found  that  polarized  light  with  differ-
ent  directions  converted  P10  arrays  into  different  structures
(Figs. 7e−7j).

Although  directional  photofluidization  has  been  studied
by  researchers  for  more  than  15  years,  the  mechanism  of
photoliquefaction  is  still  under  debate.  Some  underlying
mechanisms  have  been  summarized  in  a  previous  review,[1]

but  none  of  the  proposed  mechanisms  could  explain  the

existing  phenomena  perfectly.  Recently,  some  new  opinions
have been presented. Saphiannikova et al. disagreed with the
concept  of  photofluidization  and  proposed  the  view  that
anisotropic  light-induced  stress  contributed  to  the  structure
changes  of  azopolymers.[60] This  mechanism  cannot  explain
some photofluidization when the films are uniformly illumin-
ated whit circularly-polarized or non-polarized (lamp) light.[57]

Pellerin  and  co-workers  put  forward  a  new  mechanism:[61]

upon visible light irradiation,  P11 underwent repeated trans-
cis-trans isomerization  (Fig.  8).  Such  a  molecular  motion  is
equivalent  to the increase of  local  environment temperature
of  the  azo  groups  (some  simulation  approaches  reproduced
relatively  well  the  behavior  observed  using  the  real  azoben-
zene  molecule[62−64]).  When  the  local  temperature  exceeded
Tg of trans-P11, photofluidization occurred. However, why the
flow direction is  polarization-dependent is  difficult  to under-
stand.  Another  possible  mechanism  is  that trans-cis-trans
cycling  could  decrease Tg of  azopolymers.[65] Some  works
showed that  repeated trans-cis-trans cycles  cause a decrease
of  certain  mechanical  properties  upon  irradiation,[66−68] and
“photosoften”  the  polymer  matrix  and  enhance  polymer
chain  mobility.[69] During  irradiation,  the  population  of cis-
isomers  in  pseudo-stylbene  type  azopolymers  rose,  and
softening  was  observed  under  linearly  polarized,  circularly
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polarized  and  nonpolarized  visible  illumination.[1] Decreased
Tg may  contribute  to  flow/softening  of  azopolymers  and
directional  fluidization  is  correlated  with  the  light  polariza-
tion. However, the Tg values of pseudo-stilbene type azopoly-
mers  under  irradiation  are  difficult  to  measure  because  the
short half-lives of cis pseudo-stilbene azo groups and insuffi-
cient  light penetration  hinder  the  measurement  of Tg.  In  a
word,  the  mechanism  of  directional  photofluidization  needs
further exploration.

CONCLUSIONS

In  summary,  recent  progresses  on  two  types  of  photolique-
faction of azopolymers are reviewed. We presented their differ-
ences  in  azobenzene  type,  photoisomerization  processes,  light
wavelength, flow condition, the conditions for liquefaction and
mechanisms. We also highlighted their  applications.  Regarding
the  future  perspective  of  photoliquefaction  of  azopolymers,
there are several  notable challenges and questions:  (1)  How to
clarify  the  mechanism  of  directional  photofluidization?  If  the
two  types  of  liquefaction  have  similarity  in  mechanism  (trans-
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Fig. 7    (a) Chemical structure of azopolymer P8; (b) Deformed microcaps fabricated by irradiating the microcaps with 355 nm linearly polarized
light.  (Reprinted with permission from Ref.  [52];  Copyright  (2010)  The Optical  Society).  (c)  Chemical  structure of  azopolymer P9;  (d)  Directional
photofluidization  of  P9  line  arrays.  (Adapted  from  Ref.  [56];  Copyright  (2011)  Wiley-VCH  Verlag  GmbH  &  Co.  KGaA,  Weinheim).  (e)  Chemical
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hexagon) for (g, h) 10 min and (i, j) 30 min. (Adapted from Ref. [58]; Copyright (2014) Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim).

a

P11

O

O
N

n

N N

NO2

b

Tg(P11)=85 °C 

Teff (°C)

240
220
200
180
160
140
120
100
80
60
40
20

 
Fig.  8    (a)  Chemical  structure  of  azopolymer  P11;  (b)  Effective
temperature  (Teff)  of  each  moiety  of  P11  was  assigned  by  infrared
spectroscopy.  Local  environment  temperature  of  the  azo  groups
exceeded Tg of trans-P11  upon  visible  light  irradiation  (520  nm,  100
mW/cm2). (Reprinted with permission from Ref. [65]; Copyright (2015)
American Chemical Society).
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to-cis isomerism  and trans-cis-trans cycling  both  decrease Tg

values of azopolymers and induce liquefaction), how to monitor
the Tg of  pseudo-stilbene  type  azopolymers  during  rapid
isomerism?  (2)  Whether  the  applications  of  these  azopolymers
could  be  expanded  by  combining  with  other  functional
materials? Composites made up of azopolymers and nanoscale
materials  could  still  have  photoliquefaction  properties.  (3)
Moreover, could we design new photoliquefied polymers based
on  other  photoresponsive  groups  or  design  other  forms  of
stimuli-liquefied polymers? Besides azobenzene, spiropyran and
diarylethene also have photoisomerization properties. Polymers
with  these  groups  are  likely  to  show  similar  photoliquefaction
behaviors.
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